Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)
نویسندگان
چکیده
Moso bamboo can rapidly complete its growth in both height and diameter within only 35-40 days after shoot emergence. However, the underlying mechanism for this "explosive growth" remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the "explosively growing" shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the "explosive growth" of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo.
منابع مشابه
DYNAMIC MECHANICAL THERMAL ANALYSIS OF MOSO BAMBOO (Phyllostachys heterocycla) AT DIFFERENT MOISTURE CONTENT
Bamboo is a type of biomass materials that has great potential as a bioenergy resource in China. The thermal-mechanical behavior of bamboo plays an important role in the formation process of pellets. To investigate the effect of moisture content (MC) on thermal-mechanical behavior of bamboo, the storage modulus and loss factor of moso bamboo was determined using dynamic mechanical thermal analy...
متن کاملCharacterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis
BACKGROUND As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first...
متن کاملSpatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China
Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) is an important timber substitute in China. Site specific stand management requires an accurate estimate of soil organic carbon (SOC) stock for maintaining stand productivity and understanding global carbon cycling. This study compared ordinary kriging (OK) and inverse distance weighting (IDW) approaches to study the spatial ...
متن کاملChemical composition, and antioxidant and antimicrobial activities of essential Oil of Phyllostachys heterocycla cv. Pubescens varieties from China.
The essential oils of Phyllostachys heterocycla cv. Pubescens, Phyllostachys heterocycla cv. Gracilis, Phyllostachys heterocycla cv. Heterocycla and Phyllostachys kwangsiensis leaves were obtained by steam distillation. Their chemical components were separated and identified by gas chromatography/mass spectrometry (GC/MS). Meanwhile, the effect of scavenging free radicals of essential oil was a...
متن کاملProtocol for Callus Induction and Somatic Embryogenesis in Moso Bamboo
Moso bamboo [Phyllostachys heterocycla var. pubescens (Mazel ex J. Houz.) Ohwi] is one of the most important forest crops in China and the rest of Asia. Although many sympodial bamboo tissue culture protocols have been established, there is no protocol available for plantlet regeneration as indicated by callus induction for monopodial bamboos, such as Moso bamboo. In the present report, embryog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016